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SUMMARY 29, 36°

g

It is shown that the long range variations of the orbital ele-
ments of a lunar satellite in libration is periodic, but non-analytic,
in nature. A method for finding the period of the motion, as well
as the variations of the elements with time, is described.
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THE LIBRATION OF A LUNAR SATELLITE

INTRODUCTION

" The basic equations for the long range motion of a lunar satellite lead to
two types of motion: circulation and libration. These equations involve the
argument of pericenter and the eccentricity (or some function of the eccentricity)
as the variables (see Reference 1). When circulation occurs, all values of the
argument of pericenter ranging between 0 and 27, as well as multiples of this
range, are permitted. However, when the range of values of g is restricted to
a limited set, the motion is called libration. These two types of motion are il-
lustrated by a pendulum which is free to rotate about a horizontal axis. When the
pendulum forms complete revolutions about this axis, the motion is circulation;
however, if the pendulum oscillates about a vertical axis (e.g., the pendulum of
a clock), the motion is called libration.

The equations describing the long period motion of a lunar satellite are
similar to the equations for the stellar problem of three bodies discussed by
E. W. Brown (Reference 2) over thirty years ago. In an interesting report,
Frances Frost (Reference 3) has shown that the method of harmonic analysis
uscd by Brown is well adapted to the calculation of the motion of lunar satellites
in the case of circulation. However, this method cannot be applied when libration
takes place.

It is possible to determine the argument of pericenter g as a function of
its time derivative g from the energy equation and the equation for g given
below. It has been shown in treatises on non-linear mechanics (e.g., see Ref-
erence 4) that in the (g,g) or displacement-velocity space, libration leads to a
closed curve or cycle, while circulation leads to an open curve.

It will be shown below that the cycle described by g consists of two distinct
branches. This introduces an unexpected asymmetry in the results, leading to a
discontinuity in the derivatives of the cycle where the two branches join.

The argument of pericenter g, and consequently ¢ and e, can be found as
functions of time by integration over these branches. The period of oscillation
of the other elements of the lunar satellite may be found by integrating over the
entire region of the cycle in the displacement-velocity space.



In order to make the analysis concrete, a specific example is chosen in
this report and the calculations necessary to obtain the variations of all the ele-
ments as functions of time are given in detail.

ANALYSIS IN THE PHASE SPACE OF A PENDULUM

In order to provide motivation for the analysis of a lunar satellite in the
displacement-velocity space (or phase space, as it is often called), we first
examine the linear motion of a pendulum. We assume that the angle of oscilla-

tion of the pendulum about the vertical is small enough so that the equation of
motion can be written in the form

X +a?x=0, (1)

where x is the angle of displacement from the vertical and X is the second
derivative with respect to time.

The solution to Equation (1) can be written in the form

"
i

tbcos (at + ¢)

(2

X = 7 ab sin (at + ¢),

where b and c are constants of integration and a is the frequency of oscillation.
Equations (2) also satisfy the relation.

2 -2
X - (3)
b2  a?b?

Equation (3) is an integral of the motion, and is often called the energy integral.

The analysis in the displacement-velocity space begins with Equation (3).
We illustrate the method followed in the more complicated lunar satellite problem
by using Equation (3) to derive the results given by Equations (2).

Equation (3) represents an ellipse in the x , x space (see Figure 1); the
semi-major and semi-minor axes are b and ab, respectively. The motion
around the ellipse is taken positive in a counterclockwise direction, and the con-
vention for the four quadrants is taken as shown in Figure 1.
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Figure 1

To find the period of oscillation, we note that for the first quadrant,

22
Eoa 12 (4)
b a2 b2
consequently,
d(i)
E = —1- _.____?_tl_T._: dt. (5)

The period of oscillation T is defined by

0 d(_x_
T:ij ab) =27 (6)
2 <\
W‘(:s)

Thus, a represents the frequency of oscillation.




In addition, the indefinite integral from Equation (5) gives

x = ab sin (at + c),

where c is a constant of integration. Finally,

x = -b cos (at + ¢),

where the negative sign is the result of the sign convention chosen in Equation (4).
This example illustrates the basic principle adopted in this report for the

analysis of the libration of a lunar satellite.

THE ENERGY INTEGRAL AND THE EQUATION OF
MOTION OF THE ARGUMENT OF PERICENTER

The expressions for the energy integral and the equation of motion of the

argument of pericenter may be found in References 5 and 6. The energy equa-
tion can be written in the form

£, (m) +n3f,(n) sin? g = 0; (7

the variables are n and g, where 7= V/1-e? (e is the eccentricity), and g is
the argument of pericenter. The functions f, (1) and f, (1) are defined by

a a
- 17 1 2y _ 4 C1l s 2 2
fl(”f))——12—q—7’) + [? (10+6V )—EE]’O —2a27] +60~2V

(8)

a
f, =30 (-1 (7 -vD).
In addition, the equation for the motion of the argument of pericenter is

2
1-8§5—7—

. a 2 2
de. L -4724+10 (2 -2 sin2 g| + —L—a, > (9)
3n aqa 7 m2 n4

The quantities appearing in Equations (8) and (9) are defined in Appendix A.

. .




THE CYCLE IN PHASE SPACE

We have indicated above that libration occurs when the argument of peri-
center g is restricted to a finite range of values such that a plot of g versus g
in the phase space (called a cycle) is a closed curve (e.g., Figure 1).

In order to illustrate such a case of libration, we shall examine Equations
(7), (8), and (9) for the initial conditions

e=.1, cosi=.71066905, ¢ =90° a = 7.4822577 moon radii.

For these initial conditions, Equations (8) become

f, (1) = -22.947701 77 + 22.551912 75 - .8609575 12 + 1.29143625
(10)

f,(n) = 22.684626 (272~ 1) (n? - 1).

For the convenience of the reader, we list the values for the following constants:
Cll :
— =1.9123084 x 1075, a,=.43047875 x 1075
q
v2 = —, n = 3.8097588 x 10”2 conical (Vanguard) units.

Substitution of Equations (10) into Equation (7) provides a relation between
the eccentricity e and the argument of pericenter g. This functional relation is
plotted in Figure 2, which indicates a distorted "ellipse." The variable ¢
ranges between the values 7596481 and 104703519, while e varies between .1
and .30694755. The major axis of this "ellipse' is at e = .17962767, which may
be considered a "mean' value of sorts. Adopting the quadrani convention shown
in Figure 1, the numerical values of e and 90°- g are listed in Table 1.

The next step is to find g as a function of g, which can be readily accom-
plished by substituting the values of e and 90°—g in Table 1 into Equation (9).
It is found that the values of g in 2.8573191 X 10~ ’ canonical units vary from
—1.0396376 to 1.0950486—these values are also listed in Table 1. .

Figure 3 shows the 90°—g, g cycle derived from the values in Table 1. It
is seen that the figure departs only slightly from an ellipse, with the branch
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consisting of quadrants I and II differing a little from the branch contained in
quadrants III and IV.
EXPANSIONS IN PHASE SPACE

The results illustrated by Figure 3 may be utilized to find analytic expres-
sions for the cycle, and subsequently to express the elements of the lunar satel-

lite as functions of time.

It is convenient to define the non-dimensional variables u, Wi and v, by

_90°-¢g . g w - g
- 0 y - ] - -
14203519 ' 59705764 x 107 2 31289033 x 1077

)
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where g is in degrees and g is in canonical units. Values for u, w, and w,
appear in Table 1. The angle 14203519 is the variation of g about 90°, while
2.9705764 x 10”7 and —3.1289033 x 10”7 are, respectively, the maximum and
minimum values of g. Using the fact that the plot in Figure 3 consists of two
branches, the following expansions were derived by least squares from the
values in Table 1:

u=- {V 1-w?-.22131760 w? + .20999084 w‘;} for quadrant 1

. . u

{7’1 -w?-.22131760w? + .20999084 w‘;} for quadrant II

{ u = {y‘ 1 -Wg - .26127200 wg +.24764299 w‘; }for quadrant III

u= - {V 1- wg -.26127200 wg + .24764299 w‘; }for quadrant IV (11)



The expansions in Equations (11) were obtained by means of a desk calculator,
and are therefore carried out to only a limited number of terms. However, they
do represent the cycle within an accuracy of about 1%. ,

The next step in the process is to utilize Equations (11) to find the periodicities
of the system, as well as expansions in terms of time. .

EXPANSIONS OF g, g, ANDe IN TERMS OF TIME
The differential equation for the time is

de - 9€ (12)

integration is performed over the cycle of Figure 3, with the aid of Equations (11).

Since there are essentially two different expansions in Equations (11) (one for
each branch), we can determine two different periodicities in g and g. Thus,
we define

T, f de | (13)

c, B

where the integration is performed over quadrant I or I, and

T = [ d8 (14)

.02 g

where the integration is performed over quadrant IIT or IV. Then, by substituting
Equations (11) into Equations (13) and (14), we find that

0
-1

-3
i

, = 82462207 x 10%[sin™! w, + .44263520 w, - .27998779 w?}]

1.4294360 x 106 canonical time units l




=
I

2 = -78289502 x 10° [sin™1w, + 55254400 w, - .33019065 w3 ] !

1.3803611 x 106 canonical time units.

It follows that the period taken over the entire cycle of Figure 3 is

T=2(T, +T,).

Equations (11) and (12) can be utilized to obtain the time histories of g and
g. Thus, we find that

x .82462207 x 10° [ sin" 1w +.44263520w, -.27998779w3 | +const.

(15)
(t - t,) + const.

represents w, as a function of time in quadrant I, and - g, represents %, in
quadrant II. Similarly,

€, = — x 78289502 x 106 [ sin”!w, 1+.52254400w, - .33019065w} ] +const.

oE

(16)

T
:T— (t - t,) + const.
2

renresents w,

2 in quadrant IV.

in quadrant ITI, and - g, represents w,

Now, let us choose t-t, to be zero at the time of the initial conditions (i.e.,
the beginning of quadrant II); in addition, let g, and g, increase with time with
mean motions 7 /T, and 7/T,, respectively. Further,let g,= 90°att-t, = 0.
Values of g p €, and t-t appear in Table II.

Figures 4 and 5 are plots of u and e, respectively, vs. t - t,. Least squares
analyses yield the following results:

!

u, =-1.02099718 cos g, + .01610990 cos 3 g, +-00649749 cos 5€,17
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e =.17962767 - .07962767 (1.03054138 sin g, + .03349887 sin 3 g,

+.00518834 sin 5 §,) (18)

for quadrants I and II, and
u, = - 1.02331813 cos §2 + .01975752 cos 3 E2 + .00608506 cos 5 _g'2 (19)
e =.17962767 + .12731988 (- .95873486 sin E2 + .04685613 sin 3E2

+.00286600 sin 5 g ,) (20)

for quadrants III and IV. Equations (17), (18), (19), and (20) represent the data
to within about 2%.

{4 AND h

Equations for the motions of the mean anomaly £ and the Delaunay variable
h may be obtained from References 5 and 6 —they are as follows:

. a 2\ (n2 4,2 2_2.,2
/E:n{l—% 1 [10+3V2_6772_15(2-TI Y(n4-v )sinzg:I _%%77 3v}

72 Uk
(21)

. a _ 2 a
h=z-n"* +nv _?__1 2+Msin2g -_3_._£ . (22)
€ 4 q n2 2 5

(See Appendix A for definitions of constants and variables.)

Values for A4 /n x 105 and Ah/nv x 105 appear in Table II (A1 = £-n,
and Ah = h + nZy. In addition, Figures 6 and 7 show plots of A4 /nx 10° and
Ah/nv X 105, respectively, vs. time. These can be integrated numerically to
find the perturbations in £ and h.

12
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CONCLUSIONS

The type of motion known as libration is possible from lunar satellites — by
examining the energy equation and the equation of motion of the argument of
pericenter, initial conditions leading to libration can be found.

The methods of non-linear mechanics are useful for investigating the details
of the motion. The procedure chosen for the example in this report may be
adapted to electronic machine calculations.

The results presented here differ from those obtained through the use of
usual perturbation theories in the following ways:

1. The variation in e is much larger than the order of magnitude of the
disturbing function, which is about 10 5,

2. The variation in the argument of pericenter can be explained without a
secular term.

Finally, the fact that substantial changes may occur in the eccentricity of a
lunar satellite in libratory motion should be taken into account in the planning of
various types of orbits.
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Appendix A
SYMBOLS

semi-major axis of satellite's orbit

eccentricity of satellite's orbit

inclination of satellite's orbital plane to moon's equatorial plane

mean anomaly of satellite

argument of pericenter of satellite's orbit
Q-x,
longitude of ascending node of satellite's orbit

mean longitude of earth, measured on moon's equator
mean motion of satellite

n?al

Viea

/1-e2 cos i
V1-e?

semi-major axis of moon's orbit ~ 384,400 Km.

mean radius of moon ¥ 1738 Km.

second zonal harmonic coefficient of moon ~ 2.41 x 10~ 4

mean motion of A o

mass of moon
mass of earth

1 +

16



1 1)3
2 ag
RZ J,/a?

energy integral constant
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90°-g (deg.)

0 .
¥ 1.40225
¥ 2.48788
F 5.08020
¥ 7.66137

- ¥ 9.98252

¥11.83747
¥12.85549
¥13.79363
¥14.03390
¥14.03519

90°-g (deg.)

+14.03519
+14.02577
+13.57598
+12.65501
+11.92278
+10.39403
8.36212
7.33139
4.47007
2.61962
1.56060
0

O T O T

Table I

Quadrants I and IT

.10000000
.10027263
.10086620
.10378266
.10938007
.11811435
.13010669
14106736
16072025
17816846
17962767

4

— g X 105

3n

-1.0396376
-1.0328040
-1.0180892
- .94899765
- .82966344
- .67139774
- .49435338
- .36056622
- .16220364
.01190701
0

Quadrants IIT and IV

e

17962767
.18360556
.20860489
.23080511
.24310492
.26224988
.28000000
.28676820
.29980660
.30453859
.30609802
.30694755

4 - x105
3n

~

v
.03209762
22663012
39860814
49708257
.65845333
.82007223
.88544486

1.0181686

1.0687611

1.0857364

1.0950486

18

0
F.09990958
F.17726016
¥.36196161
¥.54586864
F.71124937
F.84341359
F.91594699
F.98278898
+.99990809

¥l

+1
+,99932883
+.96728153
+,90166289
+.84949189
+,74056924
+,569579671
+,52235733
+,31849017
+,11119194

0

-1
-.99342694
-.97927316
-.91281582
-.79803139
-.64579979
-.47550549
-.34681914
-.15601941
-.01145304

0

W)

0
.02931159
.20695896
.36400954
45393654
.60130056
.74889117
.80858956
.92979307
.97599422
.99149609

1
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)IV

Table II

t-t, (10* days)

Quadrant IT

0
.0863580
.1509922
.3020400
.4608704
.6321681
.8143666
.9529006

1.1618342
1.3221378
1.3348611

Quadrant I

5.2477884
5.1614304
5.0967962
4.9457484
4.7869180
4.6156203
4.4334218
4.3218878
4.0859342
3.9256506
3.9129273

t-t, (10* days)

Quadrant IIT

1.3348611
1.3674856
1.5641943
1.7346646
1.8301755
1.9837445
2.1383611
2.2046564
2.3688471
2.4711777
2.5313346
2.6238942

Quadrant IV

3.9129273
3.8803028
3.6835941
3.5131238
3.4176129
3.2640439
3.1094273
3.0431320
2.8789413
2.7766107
2.7164538
2.6238942

19

g, (deg.)
Quadrant I1 Quadrant I
90 90
95.822496 84.177504
100.180309 79.819691
110.364367 69.635633
121.073147 58.926853
132.622511 47.377489
144.906837 35.093163
154.247180 25.752820
168.334056 11.665944
179.142166 0.857834
180 0
g, (deg)

Quadrant III

180
182.277837
196.011995
207.914188
214.582740
225.304893
236.100188
240.728914
252.192670
259.337369
263.537508

270

Quadrant IV

0
357.722163
343.988005
333.085812
325.,417260
314.695107
303.899812
299.271086
287.807330
280.662631
276.462492

270
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Table III

Quadrants I and II

A4

n

x 10°

2.0223381
2.0177568
2.0079104
1.9620501
1.8845147
1.7859026
1.6835939
1.6141463
1.5284436
1.4805491
1.4774378

Ah

nv

x 10°

-3.6754823
-3.6762854
-3.6780420
-3.6868374
-3.7044884
-3.7340862
-3.7789088
-3.8242497
-3.9165212
-4.0109717
-4.0194326

Quadrants IIT and IV

1.4774378
1.4695560
1.4368206
1.4264079
1.4264217
1.4332899
1.4462603
1.4527512
1.4675579
1.4736671
1.4757658
1.4769324

20

-4.0194366
-4.0429523
-4.2067104
-4.3771699
-4.4828268
-4.6648510
-4.8546807
-4.9329060
-5.0934689
-5.1551381
-5.1758757
-5.1872620



